
Dynamics of perfect gases :
from atoms to fluid models

A problem more than a century old!



1. A simple case :

the motion of a pollen grain



« A brief account of microscopical 
observations on the particles contained in 
the pollen of plants ; and on the general 
existence of active molecules in organic 
and inorganic bodies » (R. Brown)

a small particle suspended in a 
fluid should be agitated by 
collisions with molecules



Brownian motion
(Wiener, Levy)
• Continuous trajectories
• Independent increments
• Gaussian increments

Microscopic model 
(Einstein, Perrin)
• Collisions with microparticles
• Random distribution of 

microparticles 
• No feedback

Macroscopic model 
(Fourier, Fick)
• Density, temperature
• Diffusion equation

Size of 
microparticle
s negligible

Long time 
behaviour
of observables

Randomness?
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2. Perfect gases :

From Boltzmann to Lanford



After the collision

A gas is a collection of interacting atoms.
To simplify, we consider contact interactions.

The particularity of perfect gases is that their 
atoms are very weakly bound.  In dilute regime, 
the mean free path (µed-1)-1 is of order 1.
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Boltzmann equation
• Statistical model
• Nonlinear pointwise interactions
• Chaotic distribution

Microscopic model 
• Elastic collisions
• Deterministic, reversible  

dynamics
• Chaotic initial data

Macroscopic model 
(Navier-Stokes-Fourier)
• Density, bulk velocity, 

temperature
• Irreversible

Low density 
limit (Lanford) Fast relaxation 

limit (Hilbert)

Chaos is propagated for short kinetic times! 
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3. Recent developments
With T. Bodineau, I. Gallagher, S. Simonella



A global statistical picture
The convergence to the Boltzmann equation when µ>>1 has to be understood as 
a law of large numbers, describing the almost sure dynamics.
� Propagation of chaos is satisfied at leading order, but correlations (which can 
be studied by cumulant techniques) induce fluctuations.

Central limit theorem : typical fluctuations of the empirical measure are of order 
O(µ-1/2)  and are governed asymptotically by a stochastic Boltzmann equation.
� Dynamical noise appears spontaneously, it comes from the sensitivity of the 
dynamics to microscopic details of the initial data..

Large deviation principle : the probability to observe atypical dynamics is 
exponentially small. The large deviation functional satisfies some Hamilton-Jacobi 
equation.
� Stochastic reversibility is retrieved at this level.



Long time behavior and hydrodynamic limits

The fluctuation field of the hard sphere system at equilibrium converges in law 
for all kinetic times and even slowly diverging times to  the Gaussian process, 
solution of the fluctuating Boltzmann equation.

In the fast relaxation limit, with a parabolic rescaling of space and time, the 
incompressible hydrodynamic fields converge in law to Gaussian processes, 
solutions to the fluctuating Stokes-Fourier equations.


