Of crystals and corals Stanislav Smirnov based on joint work with Ilya Losev September 2021

Crystals and corals

Manganese oxide dendrites on a limestone bedding plane

Hele-Shaw cell, by Yulia Petrova

Electrodeposition in a copper sulfate solution by Kevin R Johnson

Mold and lightning

Mold growth - gift by Sir Alexander Fleming to Edinburgh University Library

Lichtenberg figure

Two models: DLA and DBM

FIG. 1. Random aggregate of 3600 particles on a square lattice.

Diffusion Limited Aggregation (DLA) was introduced by **T.A. Witten and L.M. Sander** in 1981 to model a number of physical phenomena.

FIG. 1. Time-integrated photograph of a surface leader discharge (Lichtenberg figure) on a 2-mm glass

Dielectric Breakdown Model (DBM)

is a one parameter generalization, introduced by L. Niemeyer, L. Pietronero, and H. J. Wiesmann in 1984

Diffusion Limited Aggregation

Send particles from far away by Random Walk (or Brownian Motion), until they touch the cluster and become attached. The probability to attach is proportional to **harmonic measure**

Harmonic measure

 ∞

 $\varphi \colon \mathbb{D}_{-} \to \Omega$

 $\infty \mapsto Z_0$

DLA: probability to attach a particle is given by harmonic measure Outside $\Omega = \widehat{\mathbb{C}} \setminus A$ of a cluster A, viewed from z_0 (we take $z_0 = \infty$)

- **Brownian motion:** hitting probability
- conformal map: image of the length
- definitions potential theory: equilibrium measure, ω_{∞} minimizes $\iint -\log|u-v| d\omega(u) d\omega(v)$
- 3 **Dirichlet:** if $\Delta u = 0$ then $u(z_0) = \int_A u(z) d\omega_{\Omega, z_0}(z)$

DBM: probability to attach is proportional to a power η of harmonic measure (or Green's function):

 $\mathbb{P}_{j} = \boldsymbol{\omega}_{j}^{\eta} / \sum \boldsymbol{\omega}_{j}^{\eta}$ (for DLA $\mathbb{P}_{j} = \omega_{j} = \omega_{j} / \sum_{k} \omega_{k}$)

Bigger powers favor «spikes» $\eta = 1$ is DLA, while $\eta = 0$ is M. Eden model

Delectric Breakdown Model

Diffusion Limited Aggregation

9

Scaling of ω near corners: $\omega B_r \approx (r/R)^{\alpha}$ for an r-ball in a set of radius R. Clearly $\frac{1}{2} \le \alpha \le \infty$ **Beurling's estimate:** for any ball $\omega(B_r) \lesssim \sqrt{r/R}$

Hence, for an individual site *j*, $\omega_i \leq 1/\sqrt{R}$ **Makarov's theorem:**

Harmonic measure has Borel support of **dimension 1**. In discrete setting (cf Lawler) most of ω lives on sites with $\omega_i \approx 1/R$

 2π

π

0

DLA and DBM questions

Denote by R = R(T) the radius of the aggregate of T particles. We define the growth rate:

$$\beta \coloneqq \lim_{T \to \infty} \frac{\log R(T)}{\log T} \quad \text{(should do upper/lower)}$$

Clearly $R \leq T \leq R^2$ so $\frac{1}{2} \leq \beta_* \leq \beta^* \leq 1$ It is widely believed that DLA is an "honest" fractal, with $\beta_* = \beta^*$, and $\mathbf{R} \asymp T^{\boldsymbol{\beta}}$, while $\boldsymbol{\rho} \coloneqq \mathbf{1}/\boldsymbol{\beta}$ is the dimension: $\mathbf{T} \approx \mathbf{R}^{\boldsymbol{\rho}}$, $1 \leq \boldsymbol{\rho} \leq 2$.

- What is the value of ρ for DLA and η -DBM?
- Is it strictly between 1 and 2?
- Is DLA or η -DBM a self-similar fractal ?

Celebrated theorem by Harry Kesten: for DLA $ho \geq 3/2$

Proof by Kesten: for DLA $ho \geq 3/2$

For the radius R(T) of a T-particle cluster to increase, we need to attach a particle at furthermost point, say k, the probability is

R(T) $\mathbb{P}_k = \omega_k \leq \sup_i \omega_i =: R^{-\sigma}$ with $\sigma \geq 1/2$ by Beurling. Hence $\mathbb{E} \partial_T R(T) \leq R(T)^{-\sigma}$ (\heartsuit) **Informally:** assume $R(T) \simeq T^{\beta}$, then (\heartsuit) translates into $T^{\beta-1} \approx \partial_T T^{\beta} \lesssim T^{-\beta\sigma}$, so $\beta - 1 \leq -\beta \sigma$, therefore $\beta \leq \frac{1}{1+\sigma}$ and for $R \approx T^{\beta}$, $1/2 \leq \beta \leq 1$ dimension $\beta^{-1} = \rho \ge 1 + \sigma(\Phi)$, so $\rho \ge \frac{3}{2}$ $T \approx R^{
ho}$, $1 \leq
ho \leq 2$ Potentially, there are several furthermost points. This is overcome by summing

over all possible ways to reach a given radius (count self-avoiding walks!)

ω : fjords and spikes

Many important properties of $\boldsymbol{\omega}$ can be written in terms of multifractal spectrum. Let $\mathcal{F}_{\alpha} \coloneqq \{\boldsymbol{z}: \boldsymbol{\omega} \boldsymbol{B}(\boldsymbol{z}, \boldsymbol{r}) \approx \boldsymbol{r}^{\alpha}\}$ To be precise, one has to take lower/upper limits while $r \to 0$. **Def multifractal spectrum** is given by $f(\alpha) \coloneqq \operatorname{HDim}(\mathcal{F}_{\alpha})$

Important conjecture by Brennan-Carleson-Jones-Krätzer-Makarov states that $\sup_{\text{All domains}} f(\alpha) = 2 - 1/\alpha$ $f(\alpha)$ $f(\alpha)$

A different spectrum is given (at scale r=1) by

$$\tau(p) \coloneqq -\log_R Z(p), \ Z(p) \coloneqq \sum_j \omega_j^p$$

Note: related to $f(\alpha)$ by Legendre transform.

Properties:

Concave

A different spectrum is given (at scale r = 1) by

$$\tau(p) \coloneqq -\log_R Z(p), \ Z(p) \coloneqq \sum_j \omega_j^p$$

Note: related to $f(\alpha)$ by Legendre transform.

Properties:

- Concave
- Asymptotically $\sigma p c$ with $\sup \omega_j = R^{-\sigma}, c \in [0,1]$ Also $\sigma \ge \tau(a)/a$, easily follows from $R^{-a\sigma} \le \sum_j \omega_j^a \asymp R^{-\tau(a)}$

A different spectrum is given (at scale r=1) by

$$\tau(p) \coloneqq -\log_R Z(p), \ Z(p) \coloneqq \sum_j \omega_j^p$$

Note: related to $f(\alpha)$ by Legendre transform.

Properties:

- Concave
- Asymptotically $\sigma p c$ with $\sup \omega_j = R^{-\sigma}, c \in [0,1]$ Also $\sigma \ge \tau(a)/a$, easily follows from $R^{-a\sigma} \le \sum_j \omega_j^a \approx R^{-\tau(a)}$
- Makarov:

$$au(1) = 0, \ au'(1) = 1$$

 $au(p) \le p - 1$

Our theorem: for DBM $ho \geq 2-\eta/2$

Theorem [Losev-S] For Dielectric Breakdown Model with parameter $0 \le \eta \le 2$, dimension satisfies $\rho_{DBM} \ge 2 - \eta/2$

Two proofs: 1) variation of Kesten + discrete version of Makarov; 2) multifractal, cf. Halsey and Lawler.

Our theorem: for DBM $ho \geq 2-\eta/2$

 $\omega_{\mathbf{k}}$

 \mathbb{P} excursion \asymp

 $\approx \omega_k \times \omega_k$

 $\approx \mathbb{P}$ in $\times \mathbb{P}$ out

Theorem [Losev-S] For Dielectric Breakdown Model with parameter $0 \le \eta \le 2$, dimension satisfies $\rho_{DBM} \ge 2 - \eta/2$

Two proofs: 1) variation of Kesten + discrete version of Makarov; 2) multifractal, cf. Halsey and Lawler.

Proof 2) for DLA: Assume for simplicity

$$R \asymp T^{\beta}$$
 and $\sum_{j} \omega_{j}^{p} \asymp R^{-\tau(p)}$

Capacity comparable to log-radius: $Cap(A) \approx \log R$ and its increment when a particle lands at a site k, satisfies $Cap(A_{T+1}) - Cap(A_T) \approx \omega_k^2$

- Can also see by looking at changes in partition function of RW
- Increments of Cap(A) and log R are different, but time averages are comparable!

Our theorem: for DBM $ho \geq 2-\eta/2$

Increment of capacity when a particle lands at a site k is $\approx \omega_k^2$, and probability to land there is ω_k , so (on average over T)

 $\mathbb{E} \ \partial_T \log R(T) \simeq \mathbb{E} \ \partial_T \operatorname{Cap}(A_T) \simeq \sum_k \omega_k^2 \times \omega_k = \sum_k \omega_k^3 = Z(3) \quad (\diamondsuit)$ Assuming $R(T) \simeq T^{1/\rho}$, and $Z(3) \simeq R^{-\tau(3)}$ we conclude $R^{-\rho} \simeq T^{-1} \simeq \partial_T \log T^{1/\rho} \simeq Z(3) \simeq R^{-\tau(3)}$

Hence ho= au(3) (observed by Halsey), recall also $\sigma\geq au(a)/a$

We do not use Beurling's $\sigma \ge 1/2$, can deduce it from the DLA properties! Start with Kesten's $\rho \ge 1 + \sigma$ (\bigstar) and write $\rho \ge 1 + \sigma \ge 1 + \tau(3)/3 = 1 + \rho/3$ Hence $\rho(1 - 1/3) \ge 1$ and $\rho \ge 3/2$

What's next? Is DLA/DBM a fractal?

Clearly, DLA has subsequential scaling limits by precompactness: Consider it as a random set (or a tree or a mass distribution, or ...), rescale to size 1, tend $T \rightarrow \infty$.

But it might turn out a small perturbation of a disk...

Still one can study

- Branches
- Boundaries of branches
- Frontiers

Also the difference with the lattice DLA remains open

Assume similarity of one scale \Rightarrow either $\rho=2$ or spikes dominate

An unrigorous argument

How long does it take to "fill" square W_k ? We need to accumulate capacity $\approx W_k^2$ (\bigstar) Particle landing at site *ik* adds capacity $\approx \omega_{ik}^2$ The expected increase rescaled by the goal of W_k^2

$$\approx \sum_{i} \omega_{ik}^{3} W_{k}^{-2} = \sum_{i} \left(\frac{\omega_{ik}}{W_{k}} \right)^{3} W_{k} \asymp r^{-\rho} W_{k}$$

This is similar to scale 1, but we need r^{ρ}/W_k steps, and more exposed squares (larger W_k) fill much faster, obscuring other regions.

Two possibilities:

- A. Only Makarov-flat boundary: $W \leq 1/r$, uniform growth
- B. Growth dominated by spikes

HAPPY BIRTHDAY, IMU I

HAPPY 101, IMU !

«Golenischev papyrus» Egypt, around 1850BC, 13th dynasty, based on earlier scrolls from 12th dynasty. Now in *Pushkin State Museum of Fine Arts, Moscow*

