

What is information in mathematics ?

1921 Fisher Information Math. Statistics

1948 Shannon Information Theory Proba. Concentration

A Century of Information

How to represent data and analyse information ?

1940's Wiener Gaussian Models Fourier Analysis 1990's Wavelet Sparse Models Functional Analysis 2021 Neural networks High-dim. Geometry Maths not understood

Math Foundations of Statistics

1921 report of Ronald Fisher to the Royal Academy

- "The object of statistical methods is the reduction of data" "Represent the whole of the relevant data information"
- Model data $\{x_t\}_{t \le n}$ as independent samples of a distribution $p_{\theta}(x_t)$ parameterised by θ . Gaussian example: $p_{\theta}(x) \sim e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ with $\theta = (\mu, \sigma)$.
- Consistent estimator $\hat{\theta} \rightarrow \theta$ as n tends to ∞
- Maximum likelihood estimator $\hat{\theta}$ of θ given $\{x_t\}_{t \le n}$ $\hat{\theta}$ maximises $p_{\theta}(x_1, ..., x_n) = \prod_t p_{\theta}(x_t)$

• Amount of information carried by data with probability p_{θ} on the unknown parameter θ : curvature of $\log p_{\theta}$

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial \log p_{\theta}(x)}{\partial \theta}\right)^{2}\right]$$

• Cramer-Rao Bound on parameter estimation (1940's): Theorem If $\mathbb{E}(\hat{\theta}) = \theta$ then $\mathbb{E}(\hat{\theta} - \theta)^2 \ge \frac{1}{I(\theta)}$

The Fisher information controls the uncertainty to estimate θ

What family of parametrised probabilities $\{p_{\theta}\}_{\theta}$?

Shannon Information Theory

Concentration in high dimension

n independent random variables $X = (X_1, ..., X_n)$ with same probability distribution $p(X) = \prod_t p(X_t)$

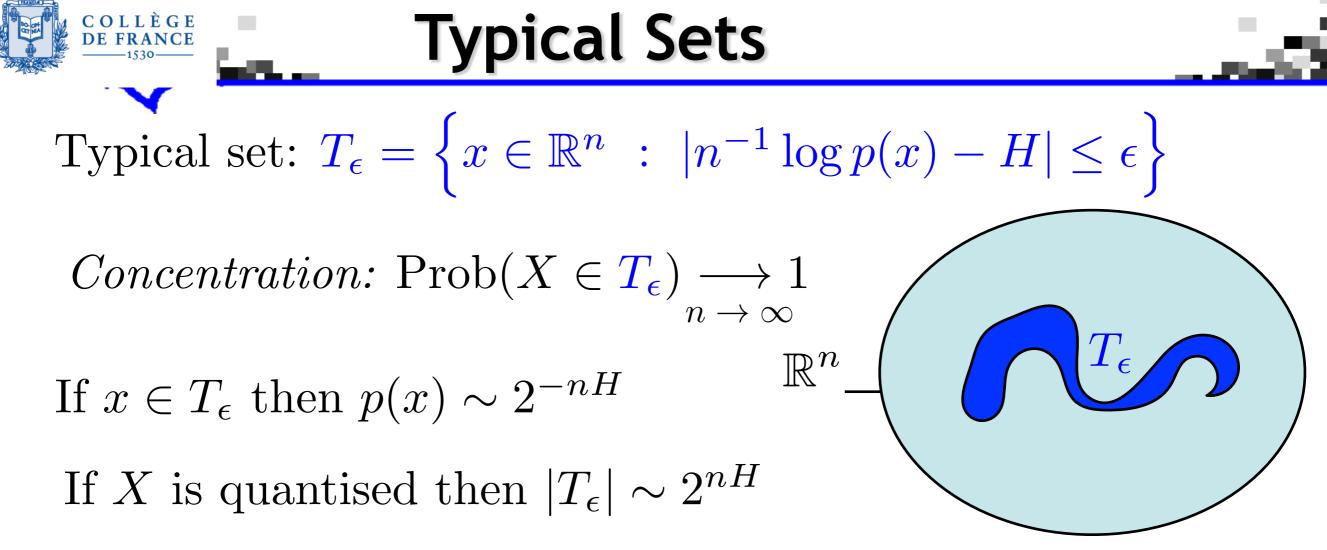
Law of large numbers: Entropy

$$-\frac{1}{n}\log p(X) = -\frac{1}{n}\sum_{t=1}^{n}\log p(X_t) \xrightarrow[n \to \infty]{} H = \mathbb{E}\Big(-\log p(X_t)\Big)$$

Asymptotic Equipartion Theorem

For an ergodic stationary process $\{X_t\}_t$

$$-\frac{1}{n} \log p(X_1, ..., X_n) \xrightarrow[n \to \infty]{} H \quad \text{with probability 1}$$



nH is the minimum average number of bits to code X

Considerable impact:

- Coding: telecommunication and data storage
- Statistical physics (thermodynamic entropy)
- Large Deviation Theory (Donsker-Varadhan 1960's)
 How to specify the geometry of Typical sets ?

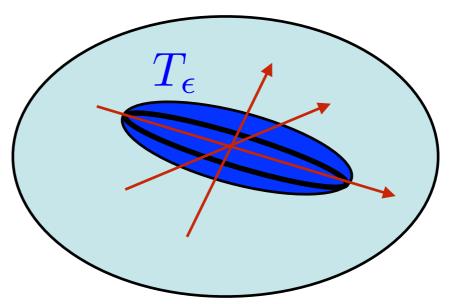
Gaussian Stationary Processes

$$p_{\Theta}(x) = Z^{-1} \exp\left(-\frac{1}{2}\langle x, \Theta x \rangle\right)$$

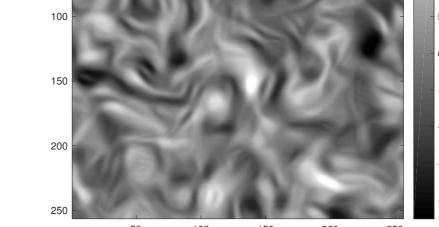
Wiener

where Θ is a positive matrix of parameters

Typical sets T_{ϵ} are ellipsoids whose principal axes are vectors vectors of an orthonormal basis \mathcal{B} which diagonalises Θ .



• If $X_1...,X_t,...$ is stationary, i.e. p(x) is invariant to time-shift then \mathcal{B} is a Fourier basis: $X_t = \sum_{\omega} \tilde{X}_{\omega} e^{it\omega}$ Limit of continuous time: spectral representation Typical sets: balls of weighted Fourier spaces (Sobolev).

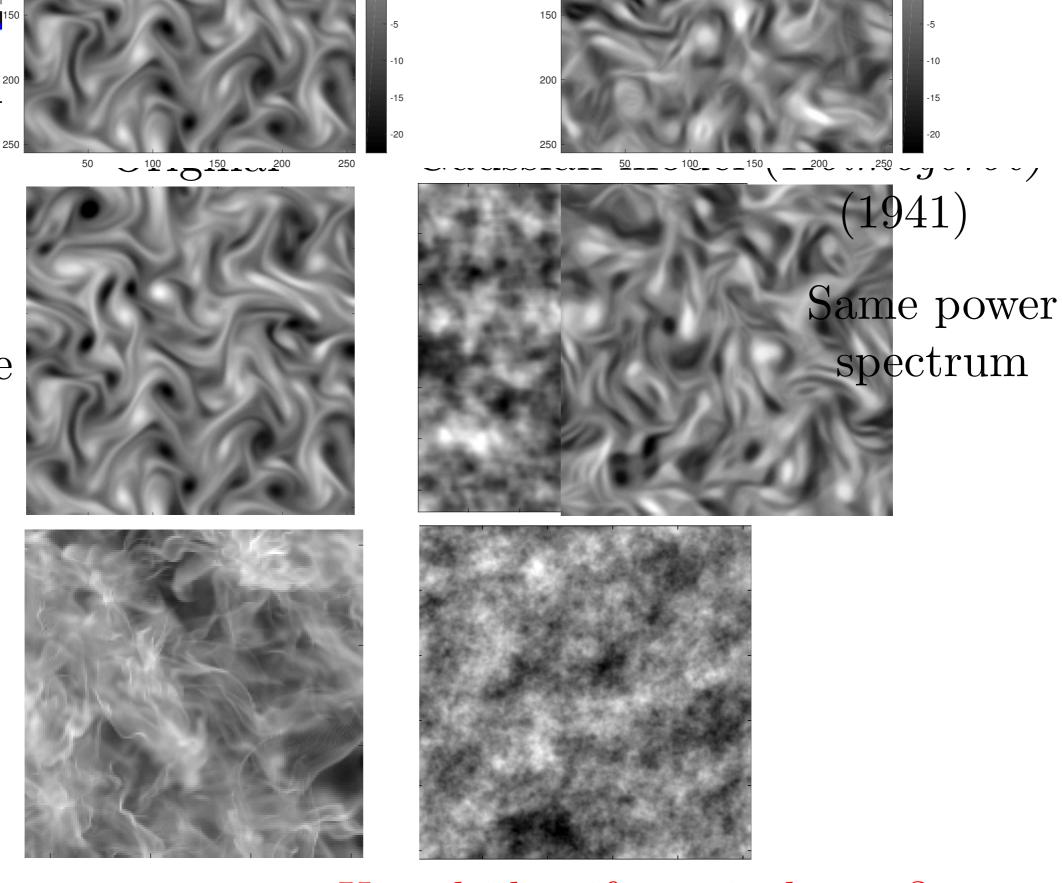


~ ~ /

Fluid Turbulence

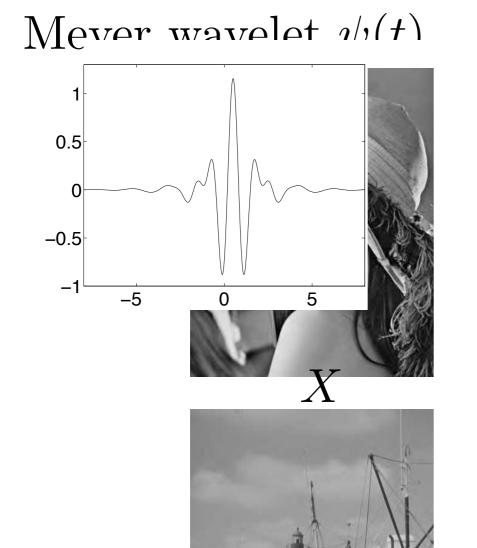
Cosmologic

Turbulence

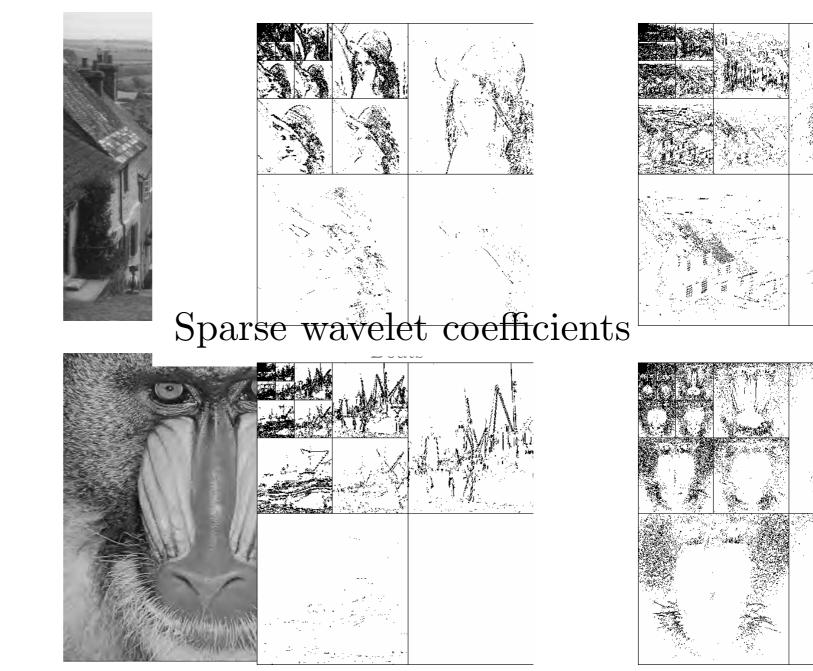


How to represent X and identify typical sets?

- Represent transient phenomena with localised wavelets.
- Sparse representations in wavelet bases (1980-90's):



Orthonormal hasis of $\mathbf{L}^2(\mathbb{R})$

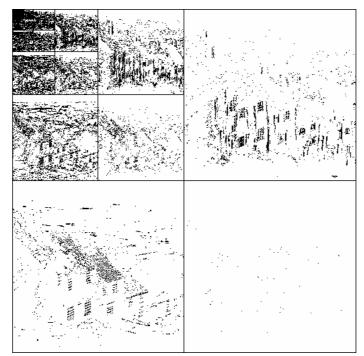


Compression and Typical Sets

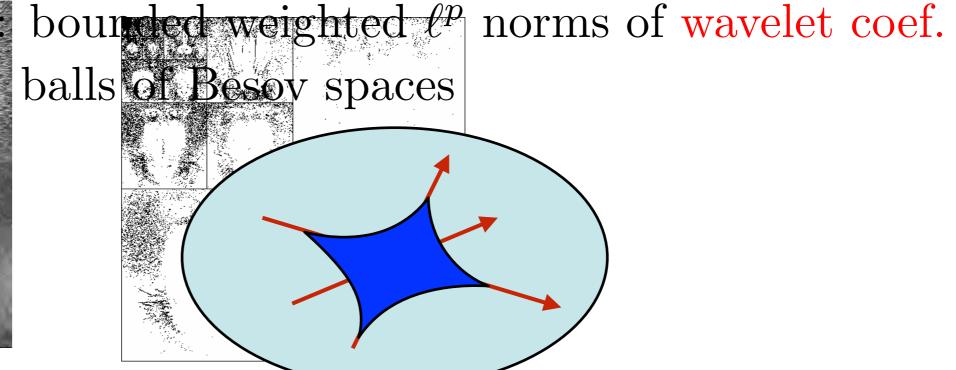
Original

C O L L È G E De france

Sparse Wavelet coefficients



JPEG-2000 Compressed by 40



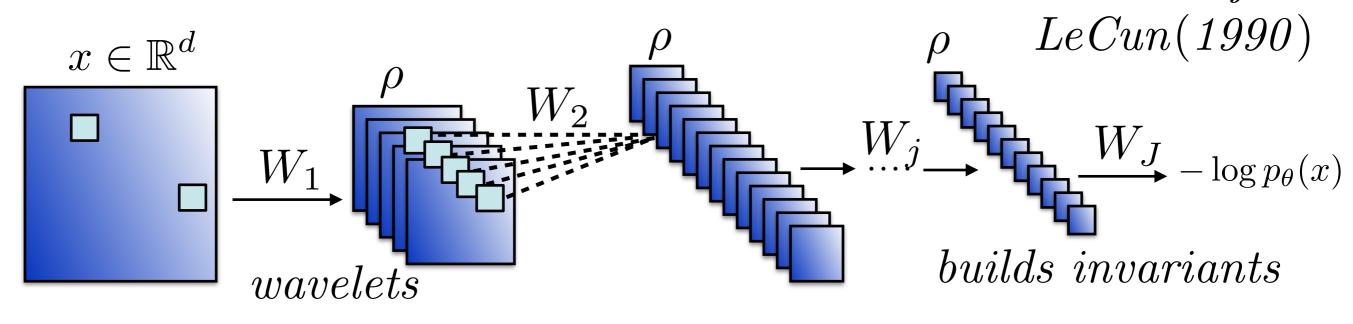
Still too crude to model geometric image structures: what else ?

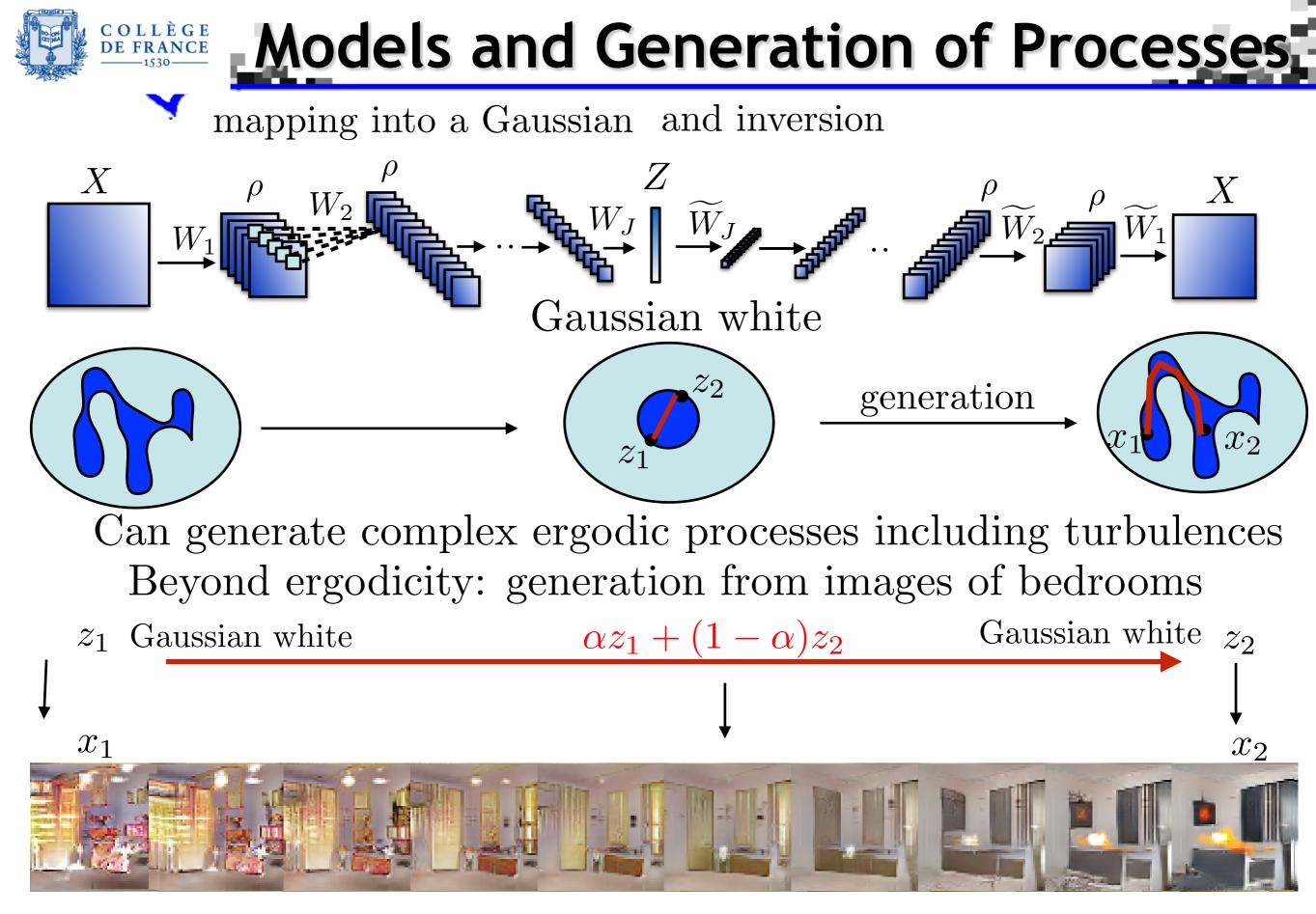
• Alternate linear operators and a pointwise non-linearity:

$$-\log p_{\theta}(x) = W_J \rho W_{J-1} \dots \rho W_2 \rho W_1 x$$

with a rectifier $\rho(\alpha) = \max(\alpha, 0)$ and $\theta = (W_j)_{1 \le j \le J}$ are matrices optimised by maximising the data *likelihood* with a gradient descent.

• Convolutional architectures: shift-invariant operators W_i

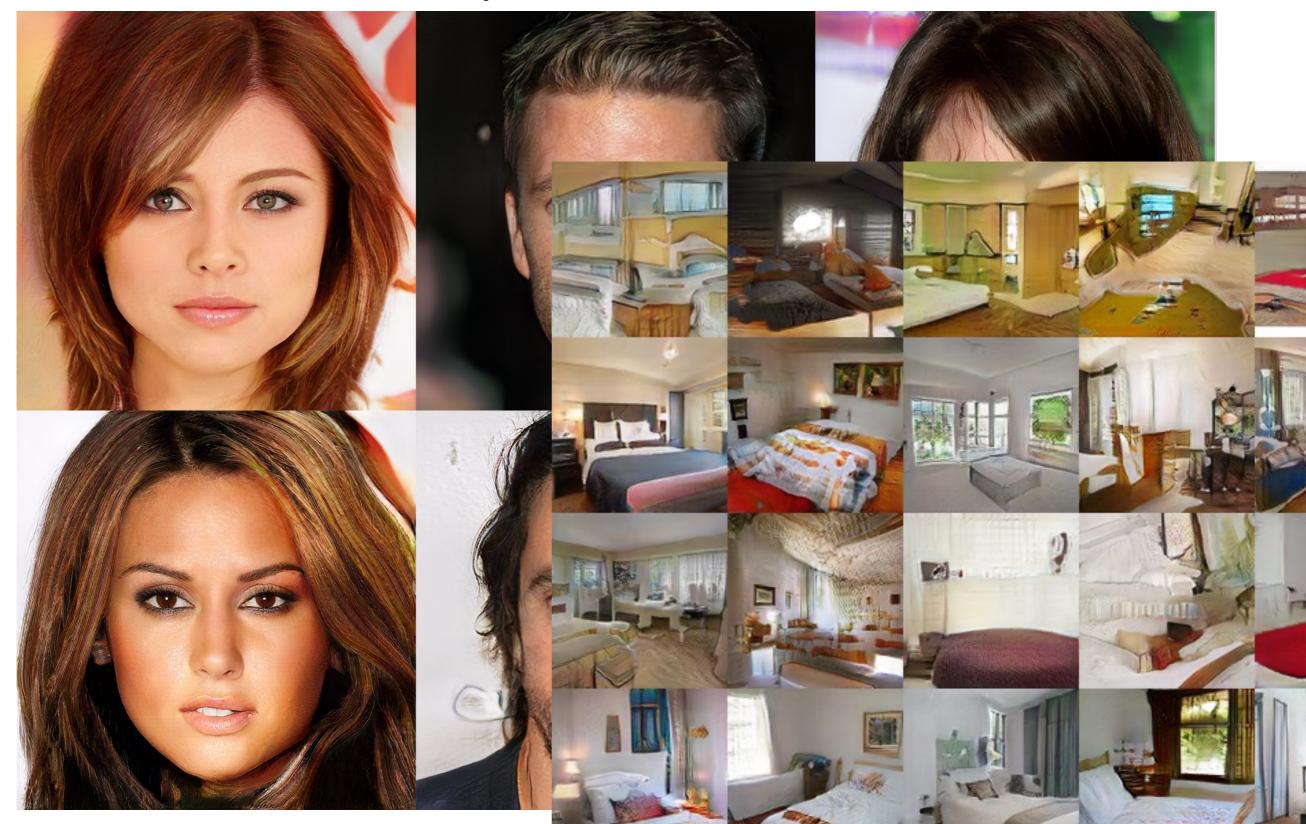




What class of random processes / transport / function spaces ?

High Resolution Generation

▲ T. Karras, T. Aila, S. Laine, J. Lehtinen
Generated from Hollywood celebrities data basis



- Information processing is about high-dimensional geometry.
- Neural networks have spectacular ability to process information, but mathematically not understood.
- Major societal issue because of critical AI applications: medical, transport, decision making...
- Outstanding questions, from *statistics* to:
 - Probability and concentration
 - Functional and harmonic analysis
 - Geometry and group theory
 - Optimisation and high-dimensional transport