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    A Century of Information

1921
Fisher Information
Math. Statistics

1948
Shannon Information Theory

Proba. Concentration

What is information in mathematics ?

1940’s
Wiener Gaussian Models

Fourier Analysis

1990’s
Wavelet Sparse Models
Functional Analysis

How to represent data and analyse information ?

2021

Neural networks

High-dim. Geometry

Maths not understood



    Math Foundations of Statistics 
1921 report of Ronald Fisher to the Royal Academy

”The object of statistical methods is the reduction of data”

”Represent the whole of the relevant data information”

• Model data {xt}tn as independant samples

Gaussian example: p✓(x) ⇠ e�
(x�µ)2

2�2 with ✓ = (µ,�).

of a distribution p✓(xt) parameterised by ✓.

• Consistent estimator ✓̂ ! ✓ as n tends to 1

✓̂ maximises p✓(x1, ..., xn) =
Q

t p✓(xt)

• Maximum likelihood estimator ✓̂ of ✓ given {xt}tn



        Fisher Information

I(✓) = E
h⇣@ log p✓(x)

@✓

⌘2i

• Amount of information carried by data with probability p✓

The Fisher information controls the uncertainty to estimate ✓

If E(✓̂) = ✓ thenTheorem

E(✓̂ � ✓)2 � 1

I(✓)

• Cramer-Rao Bound on parameter estimation (1940’s):

What family of parametrised probabilities {p✓}✓ ?

on the unknown parameter ✓: curvature of log p✓



       Shannon Information Theory
Concentration in high dimension

A sequence of n independent random variables X = (X1, ..., Xn)

with same probability distribution p(X) =
Q

t p(Xt)

Law of large numbers: Entropy

n ! 1
� 1

n
log p(X) = � 1

n

nX

t=1

log p(Xt) H = E
⇣
� log p(Xt)

⌘

Asymptotic Equipartion Theorem

n ! 1
H with probability 1� 1

n
log p(X1, ..., Xn)

For an ergodic stationary process {Xt}t



          Typical Sets

Concentration: Prob(X 2 T✏) �! 1

Typical set: T✏ =
n
x 2 Rn : |n�1 log p(x)�H|  ✏

o

Rn

n ! 1

nH is the minimum average number of bits to code X

If x 2 T✏ then p(x) ⇠ 2�nH

If X is quantised then |T✏| ⇠ 2nH

How to specify the geometry of Typical sets ?

Considerable impact:

- Coding: telecommunication and data storage

- Statistical physics (thermodynamic entropy)

- Large Deviation Theory (Donsker-Varadhan 1960’s)

T✏



      Gaussian Stationary Processes

where ⇥ is a positive matrix of parameters

vectors of an orthonormal basis B which diagonalises ⇥.

• If X1...,Xt,... is stationary, i.e. p(x) is invariant to time-shift

then B is a Fourier basis:

Limit of continuous time: spectral representation
Typical sets: balls of weighted Fourier spaces (Sobolev).

T✏

Typical sets T✏ are ellipsoids whose principal axes are vectors

Xt =
X

!

X̃! eit!

Wiener

p⇥(x) = Z�1 exp
⇣
� 1

2 hx,⇥xi
⌘



  Non Gaussian Ergodic Processes
• Non Gaussianity: transients, intermittency, crises, edges...

Fluid
Turbulence

Cosmologic
Turbulence

Gaussian model (Kolmogorov)OriginalOriginal
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Figure 9: Top: standard 2nd order scattering in (3), Middle: Simoncelli’s

Representation defined in (4), bottom: Fourier Roto-translation defined in

(6).
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How to represent X and identify typical sets ?

(1941)

Same power
spectrum



 Sparse Wavelet Representations

• Represent transient phenomena with localised wavelets.

Meyer wavelet  (t) Orthonormal basis of L2
(R)

n
 j,n(t) = 2�j/2 (2jt� n)

o

j,n

• Sparse representations in wavelet bases (1980-90’s):

X =
X

j,n

hX, j,ni j,n

370 Chapter 10. Compression

with Hd(f) = −
∫

p(x) log2 p(x) dx. It predicts an exponential distortion-rate decay. The high
resolution quantization assumption is valid if the quantization bins are small enough, which means
that R/N is sufficiently large.

Coded sequences of quantized coefficients are often not homogeneous and ergodic sources. Adap-
tive variable length codes can then produce a bit budget that is below the entropy (10.46). For
example, the wavelet coefficients of an image often have a larger amplitude at large scales. When
coding coefficients from large to fine scales, an adaptive arithmetic code adapts progressively the
estimated probability distribution. It thus produces a total bit budget which is often smaller than
the entropy H(f) obtained with a fixed code globally optimized for the N wavelet coefficients.

Lena GoldHill

Boats Mandrill

Figure 10.7: Result of a wavelet transform code, with an adaptive arithmetic coding using R̄ = 0.5
bit/pixel, for images of N = 5122 pixels.

Wavelet Image Code A simple wavelet image code is introduced to illustrate the properties of low
bit-rate transform coding in sparse representations. The image is decomposed in a separable wavelet
basis. All wavelet coefficients are uniformly quantized and coded with an adaptive arithmetic code.
Figure 10.7 shows examples of coded images with R/N = 0.5 bit/pixel.

The Peak Signal to Noise Ratio (PSNR) is defined by

PSNR(R, f) = 10 log10
N 2552

d(R, f)
.

The high resolution distortion rate formula (10.47) predicts that there exists a constant K such
that

PSNR(R, f) = (20 log10 2) R̄ + K with R̄ = R/N .

372 Chapter 10. Compression

Lena GoldHill

Boats Mandrill

Figure 10.10: Significance maps of quantized wavelet coefficients for images coded with R̄ = 0.5
bit/pixel.
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   Compression and Typical Sets

372 Chapter 10. Compression

Lena GoldHill

Boats Mandrill

Figure 10.10: Significance maps of quantized wavelet coefficients for images coded with R̄ = 0.5
bit/pixel.

10.5. Image Compression Standards 383

0.2 bit/pixel 0.05 bit/pixel

Figure 10.15: JPEG-2000 transform coding.
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Figure 10.7: Result of a wavelet transform code, with an adaptive arithmetic coding using R̄ = 0.5
bit/pixel, for images of N = 5122 pixels.

Wavelet Image Code A simple wavelet image code is introduced to illustrate the properties of low
bit-rate transform coding in sparse representations. The image is decomposed in a separable wavelet
basis. All wavelet coefficients are uniformly quantized and coded with an adaptive arithmetic code.
Figure 10.7 shows examples of coded images with R/N = 0.5 bit/pixel.

The Peak Signal to Noise Ratio (PSNR) is defined by

PSNR(R, f) = 10 log10
N 2552

d(R, f)
.

The high resolution distortion rate formula (10.47) predicts that there exists a constant K such
that

PSNR(R, f) = (20 log10 2) R̄ + K with R̄ = R/N .

Wavelet coe�cientsOriginal
JPEG-2000

Compressed by 40

Sparse

Still too crude to model geometric image structures: what else ?

T✏

balls of Besov spaces
Typical sets T✏ : bounded weighted `p norms of wavelet coef.



 New Frontier: Neural Networks

wavelets

⇢
⇢x 2 Rd

W1

W2
Wj WJ

⇢

• Convolutional architectures: shift-invariant operators Wj

� log p✓(x)

McCulloch and Pitts (1943)

• Alternate linear operators and a pointwise non-linearity:

� log p✓(x) = WJ ⇢WJ�1 ... ⇢W2 ⇢W1x

with a rectifier ⇢(↵) = max(↵, 0)

and ✓ = (Wj)1jJ are matrices optimised by

maximising the data likelihood with a gradient descent.

builds invariants

LeCun(1990 )



 Models and Generation of Processes

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

↵z1 + (1� ↵)z2

What class of random processes / transport / function spaces ?

X
WJW1

W2
⇢

⇢

fW1
fW2

fWJ

⇢⇢ X
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generation

Beyond ergodicity: generation from images of bedrooms

Z = f✓(X)

Can generate complex ergodic processes including turbulences

mapping into a Gaussian and inversion



  High Resolution Generation
Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

T. Karras, T. Aila, S. Laine, J. Lehtinen
Hollywood celebrities data basisGenerated from



 Outstanding Mathematical Questions

• Neural networks have spectacular ability to process information,

but mathematically not understood.

- Functional and harmonic analysis

- Geometry and group theory

- Probability and concentration

- Optimisation and high-dimensional transport

• Outstanding questions, from statistics to:

• Information processing is about high-dimensional geometry.

medical, transport, decision making...

• Major societal issue because of critical AI applications:


