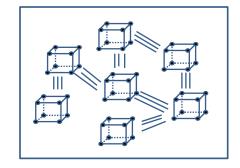
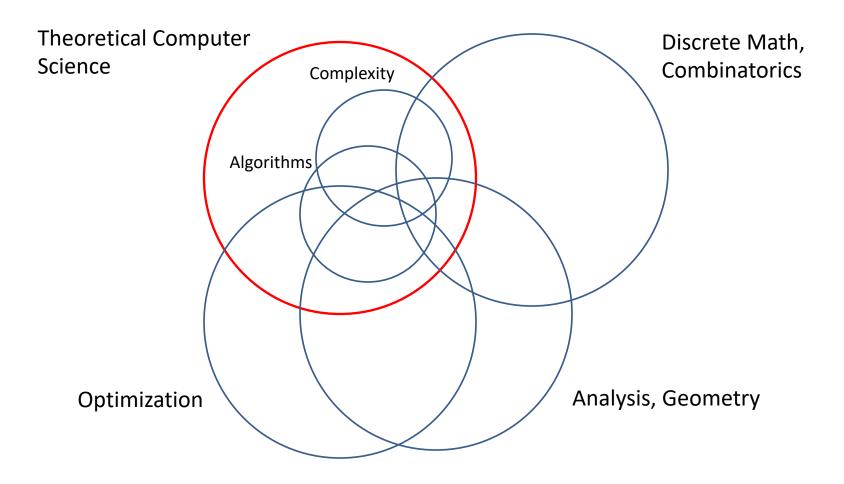

Hardness of Approximation


From the PCP Theorem to the 2-to-2 Games Theorem

$x_1 - x_7 = 11$ $x_2 - x_3 = 13$		
$x_7 - x_9 = 15$	(mod 17)	



Subhash Khot Courant Institute of Mathematical Sciences New York University

Where it Fits

NP-hard Problems

Traveling Salesperson

(x OR y OR z) AND (x OR \overline{y} OR z) AND

(x OR y OR $\overline{z})$ AND (x OR \overline{y} OR $\overline{z})$ AND

 $(\bar{x} \text{ OR y OR z}) \text{ AND } (\bar{x} \text{ OR } \bar{y} \text{ OR } \bar{z})$

3-SAT

- Everywhere, look under your chair! All equivalent to each other.
- $P \neq NP \equiv$ There is no fast (polynomial time) algorithm.
- Can we compute approximate solutions fast? (practice, theory, math).

NP-hard Problems

How well can we approximate?

Traveling Salesperson

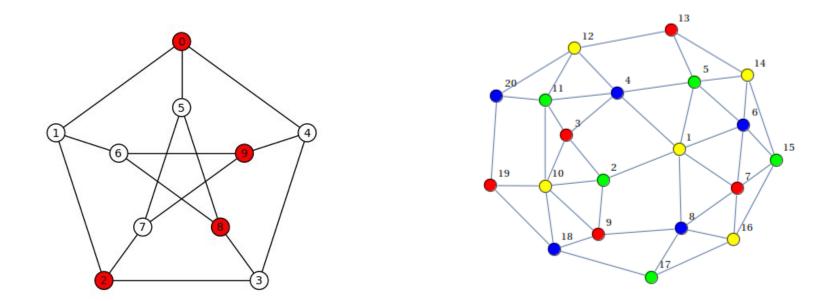
Within 1% [Arora, Mitchell 98] $\begin{array}{l} (\times \mbox{ OR } y \mbox{ OR } z) \mbox{ AND } (\times \mbox{ OR } \bar{y} \mbox{ OR } z) \mbox{ AND } \\ (\times \mbox{ OR } y \mbox{ OR } \bar{z}) \mbox{ AND } (\times \mbox{ OR } \bar{y} \mbox{ OR } \bar{z}) \mbox{ AND } \\ (\bar{x} \mbox{ OR } y \mbox{ OR } z) \mbox{ AND } (\bar{x} \mbox{ OR } \bar{y} \mbox{ OR } \bar{z}) \end{array}$

3-SAT

 $\frac{7}{8}$ but not better [Hastad 96]

- Focus of this talk: Hardness of approximation
- Amazing progress so far. Many challenges remain.
- Exact versus Approximate: a different ballgame.

Hardness of Approximation: Historically

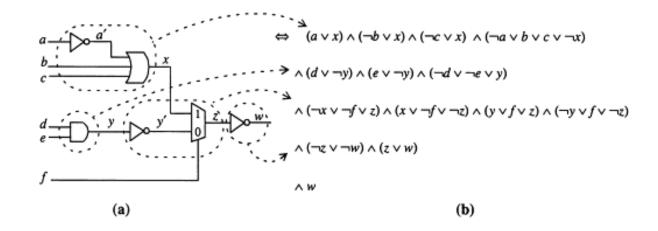

1970	NP-hardness	[Cook, Karp, Levin]
1990	PCP Theorem	[Arora, Babai, Feige, Fortnow, Goldwasser, Lovasz] [Karloff, Lund, Motwani, Nisan, Safra, Shamir, Sudan, Szegedy]
1995- 2015	Multi-Prover Games, Boolean Function Analysis	[Bellare, Chan, Dinur, Feige, Goldreich, Guruswami, Hastad, K] [Kindler, Moshkovitz, Mossel, O'Donnell, Raz, Regev] [Raghavendra, Safra, Samorodnitsky, Sudan, Steurer, Trevisan]
2018	2-to-2 Games Theorem	[Dinur, K, Kindler, Minzer, Safra]
??	Unique Games Conjecture	[K]
??	Small Set Expansion Conjecture	[Raghavendra, Steurer]

Overview of the Talk

- Independent Set Problem Checking a proof without looking at it.
- Maximum Cut Problem Majority vote, isoperimetry, spherical cubes.
- 2-to-2 Game Problem

NP-hard despite all the evidence otherwise.

Independent Set Problem

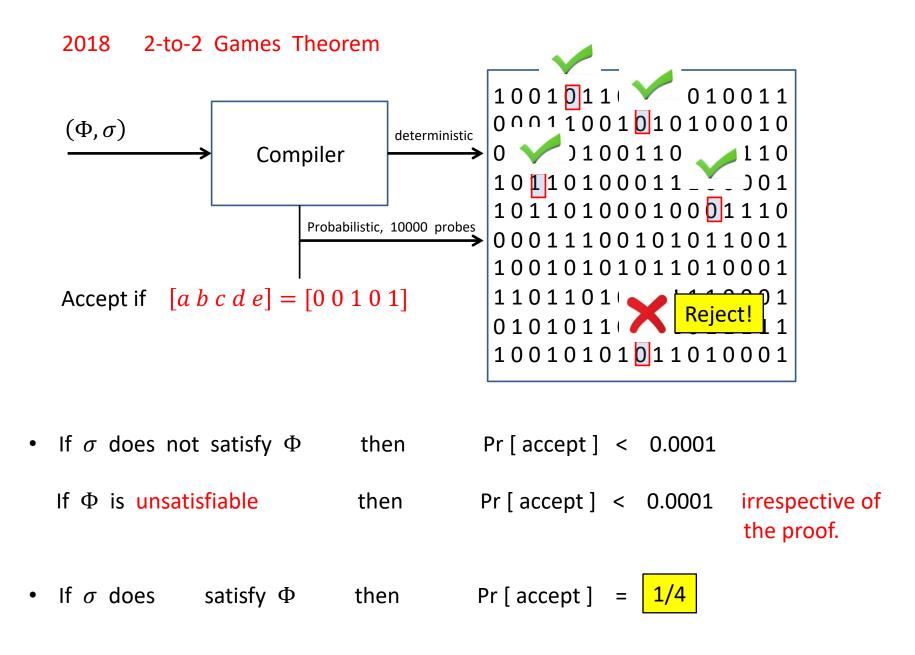

Problem

- Given: A graph with N vertices that contains an independent set of size $\frac{N}{4}$
- Goal: Find a large independent set.

2018 2-to-2 Games Theorem:

NP-hard to find independent set of size 0.001 N.

Checking Proofs of Satisfiability

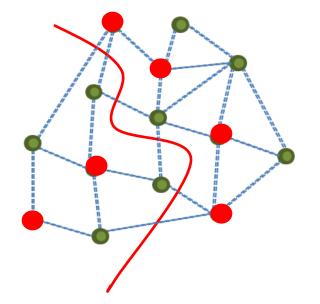

Satisfiability formula: Φ

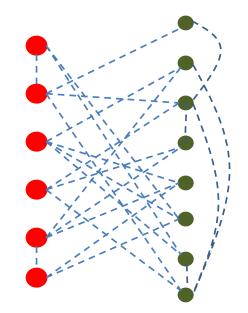
Fate of the word depends on knowing if Φ has a satisfying assignment. if so, what is it.

Crackpots claiming to discover satisfying assignment σ .

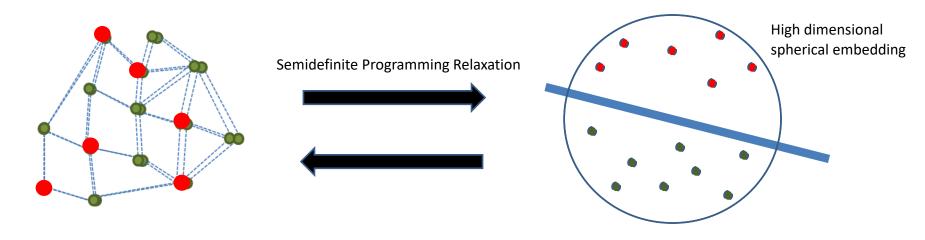
Can we minimize effort of "talking" to the crackpots and "verifying" their claim?

Checking Proofs without Looking

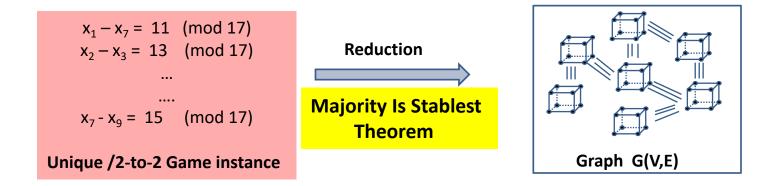

Overview of the Talk


- Independent Set Problem Checking a proof without looking at it.
- Maximum Cut Problem Majority vote, isoperimetry, spherical cubes.
- 2-to-2 Game Problem

NP-hard despite all the evidence otherwise.

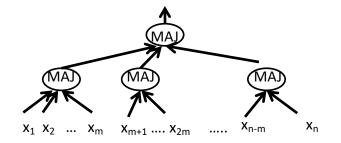

Maximum Cut Problem

Find a cut that maximizes the number of edges cut.



Goemans-Williamson Algorithm '90

- Unique / 2-to-2 Games Conjecture ⇒ [Goemans Williamson] is optimal!
 - Majority is Stablest.
 - Isoperimetric problems.


Reduction, Majority Is Stablest Theorem

- $f: \{-1,1\}^n \rightarrow \{-1,1\} \equiv$ "voting schemes"
- Two candidates $\{-1,1\}$, n voters, votes are i.i.d. $\{-1,1\}$.
- Voting scheme $f: \{-1,1\}^n \rightarrow \{-1,1\}$, "democratic: no voter too influential".
- Majority

Electoral College

Majority Is Stablest Theorem

- Voting scheme $f: \{-1,1\}^n \rightarrow \{-1,1\}$, "democratic", "balanced".
- Which f is most noise-stable?

$$x \leftarrow (x_1, \dots, x_n), \quad \forall i \ y_i \leftarrow \begin{cases} x_i & \text{with probability} \quad 1 - \varepsilon \\ -x_i & \text{with probability} & \varepsilon \end{cases}$$

?

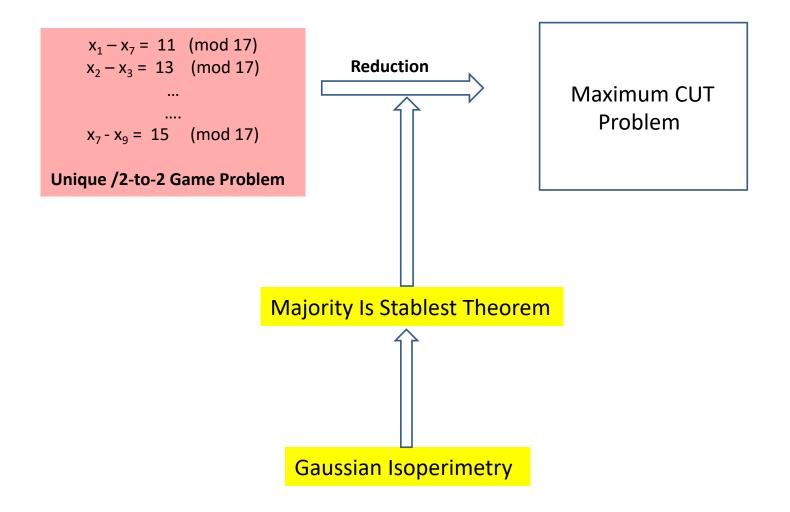
$$y \leftarrow (y_1, \dots, y_n).$$

Which f minimizes $\Pr_{x,y}[f(x) \neq f(y)]$

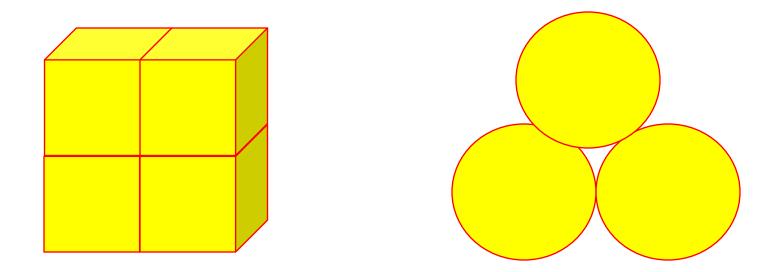
- [Mossel O'Donnell Oleszkiewicz '05] Majority!
- Main idea: Switch from Boolean domain to Gaussian domain.

Isoperimetry

In Rⁿ, which "shape" with a fixed volume has least surface area?


Standard case:

[Borell '85]


Gaussian case:

Punchline

Spherical Cubes: Hardness Amplification Fails

Problem: Tiling Rⁿ using a "shape" of unit volume and minimum surface area.

[Raz, Kindler O'Donnell Rao Wigderson, Alon Klartag '08]

There exists a tiling shape with unit volume and surface area $O(\sqrt{n})!$

Overview of the Talk

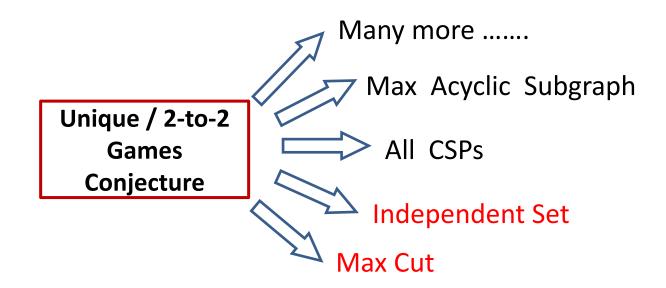
- Independent Set Problem Checking a proof without looking at it.
- Maximum Cut Problem Majority vote, isoperimetry, spherical cubes.
- 2-to-2 Game Problem

NP-hard despite all the evidence otherwise.

Unique Game

$x_1 - x_7 = 5$ $x_2 - x_3 = -2$	(mod p) (mod p)
$\mathbf{x}_{i} - \mathbf{x}_{j} = \mathbf{c}_{ij}$	(mod p)
$x_7 - x_n = 11$	(mod p)

2-to-2 Game


$$\begin{array}{rcrrr} x_1 - x_7 &=& 5, -1 & (mod p) \\ x_2 - x_3 &=& -2, \ 0 & (mod p) \\ & & \\ & & \\ x_i - x_j &=& c_{ij}, b_{ij} & (mod p) \\ & & \\ & & \\ & & \\ x_7 - x_n &=& 11, \ 3 & (mod p) \end{array}$$

Unique Games Conjecture

 $\forall \ \delta > 0, \ \exists \ p \ \text{such that given a} \ 1 - \delta \ \text{satisfiable} \ \text{Unique Game,} \\ \text{it is NP-hard to} & \text{find a} & \delta \ \text{satisfying} \ \text{assignment.} \\ \textbf{2-to-2 Games Theorem} & \frac{1}{2} & \text{Unique Game} \\ \forall \ \delta > 0, \ \exists \ p \ \text{such that given a} \ 1 \longrightarrow \delta \ \text{satisfiable} \ \frac{2-\text{to-2 Game}}{2-\text{to-2 Game}}, \\ \text{it is NP-hard to} & \text{find a} & \delta \ \text{satisfying} \ \text{assignment.} \\ \end{cases}$

Simplest Hard Problem

Many other problems are hard to approximate.

- Algorithms, Optimization.
- Computational complexity.
- Analysis and Geometry.